Specialty Optical Fiber

Verrillon VSS200 Series Coupler Fiber

Verrillon VSS200 Coupler Fiber products consist of a family of single-mode fibers designed for fused devices manufacturing such as couplers, splitters, WDMs, tap couplers and add/ drop filters for communications and sensing applications. These fibers exhibit exceptionally low optical loss, low excess loss, low insertion loss, as well as low bend-loss due to their high numerical apertures. These coupler fibers are available in all Verrillon coatings and coating combinations and in numerical apertures from 0.13 to 0.20.

Features

- Exhibits lower excess loss in couplers and splitters
- High numerical aperture design for low bend loss
- Ideal for 980nm pumping of EDFAs
- Fully qualified to Telcordia GR-20
- Available Numerical Apertures: 0.20, 0.16, 0.13 and others.

Applications

- Communications Networks
- Optical fused couplers and splitters
- Wavelength Division Multiplexing devices (WDMs)
- Tap couplers
- Optical Add/Drop filters
- Fiber pigtails
- Erbium-Doped Fiber Amplifiers (EDFAs)

Specifications

PART NO.	CF-2-125-0	CF-4-125-20-1	CF-5-125-2
Description	980 nm Acrylate coated, Coupler Fiber,	980 nm Acrylate Coated, Coupler Fiber, 0.20	1310/1550 nm Acrylate Coated,
	0.16 NA, 200 kpsi	NA, 200 kpsi	Coupler Fiber, 0.13 NA, 200 kpsi
PARAMETER	VALUE		
Material			
Coating	Dual UV Acrylate	Dual UV Acrylate	Dual UV Acrylate
Geometry			
Clad Diameter (µm)	125 ± 1	125 ± 1	125 ± 1
Clad Non-Circularity (%)	—	≤ 2	—
Core/Clad Offset (µm)	≤ 0.3	≤ 0.3	≤ 0.5
Coat Diameter (µm)	245 ± 15	245 ± 15	245 ± 15
Optical			
NA (nominal)	0.16	0.20	0.13
Attenuation @ 980 nm (dB/m)	≤ 3.0	≤ 3.5	—
Attenuation@ 1310 nm (dB/km)	—	—	≤ 0.5
Attenuation@ 1550 nm (dB/km)	—	—	≤ 0.5
Cutoff Wavelength (nm)	≤ 960	≤ 960	1250 ±40
Mode Field Diameter ¹ @ 980 nm (µm)	5.0 ± 0.3	4.2 ± 0.3	—
Mode Field Diameter ¹ @ 1310 nm (µm)	—	—	8.6 ± 0.5
Mode Field Diameter ¹ @ 1550 nm (µm)	—	—	9.7 ± 0.5
Bend Loss ² @ 1310 nm (µm)	—	—	≤ 0.25
Bend Loss ² @ 1550 nm (µm)	—	—	≤ 0.25
Mechanical			
Tensile Strength (kpsi)	≥ 200	≥ 200	≥ 200
Operating Temperature (°C)	-40 to +85	-40 to +85	-40 to +85

¹ Petermann II Definition

² 10 turns of fiber on a 30 mm diameter mandrel